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Shapes of fluid vesicles anchored by polymer chains
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We have studied polymer chains anchoring to fluid vesicles by the combination of self-consistent-field

theory (SCFT) for polymer chains and Helfrich curvature energy theory for fluid membranes. Both

density distributions of chain segments and shapes of fluid vesicles have been obtained. Due to the

limited available space and reduced conformational entropy for the anchored polymer chains, the

polymer chains induce the inhomogeneous entropic pressure on fluid membranes, which lead to the

shape deformation of the vesicle. In the present study, the shapes of vesicle anchored by polymer chains

for a prescribed volume and surface area are investigated as functions of interactions between chain

segments and the membrane, the anchored polymer chain lengths, the solvent quality and the bending

rigidity of membrane. It will be straightforward to extend this method to more complicated systems,

such as vesicles with multiple anchored chains, block copolymers or semiflexible chains.
1. Introduction

Lipid bilayers are important components of living cells with

diameters ranging from a few nanometres to hundreds of

micrometres. In biological systems, a large number of macro-

molecules, such as polysaccharides, membrane proteins,

glycocalix and cytoskeletons,1,2 decorate the outer and inner

sides of lipid bilayers. These macromolecules play an important

role in the regulation of biological functions, such as signal

transduction, endocytosis and exocytosis, cell motility, cell

mitosis and protecting the cell against mechanical and chemical

attacks. To study these decorated lipid bilayers, fluid vesicles

anchored by polymer chains as a simplified model system have

attracted wide interest in recent in vitro experiments.3–8 Because

of the anchoring of polymer chains to vesicles, various changes

in vesicle shapes, such as budding, increnation, pearling and

coiling, have been observed.

Two methods are commonly adopted to anchor polymers onto

membranes: one is a chemical method via a lipid anchor, where

one polymer is covalently bound to a lipid molecule; the other

one is through physical interactions between the side groups of

the polymer and the lipids.4,5 When one polymer approaches the

membrane, its conformational entropy is reduced due to the

space restriction caused by the presence of the impenetrable

membrane. The overall conformational entropy loss for one

anchored polymer chain in an ideal state is estimated close to

a few kBT, which is far less than the anchoring energy

(�20kBT).16 Thus, when the polymer is anchored, the mean

lifetime of the anchoring state is long so that the number of

anchored polymers is approximately close to constant. However,

the diffusion of a lipid anchor on membranes is much slower than

shape fluctuations of vesicles, since a typical time for POPC to
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diffuse at a length scale is 6-fold larger than the time for shape

fluctuations of vesicles to occur at the same length scale.9,10

Likewise, the activation energy for the lateral diffusion of the

anchored polymer is about 16kBT,9 which is higher than the

overall conformational entropy loss of the polymer. Thus,

when the polymer is anchored, the anchored polymer laterally

diffuses slowly enough so as to be approximately quiescent on

membranes.

Numerous theoretical studies have been devoted to subtle and

complicated shape changes of membranes arising from the

polymer chains anchoring to membranes.11–17 These studies have

revealed that the local inhomogeneous curvature and bending

rigidity of the membrane are induced by the polymer attached/

adsorbed to one side of the fluid membrane.11–17 Previous studies

have suggested that polymer grafting leads to a stiffening of the

membrane. However, in the case of reversible adsorption, mean

field theory presents the surprising result that the adsorbed

polymer decreases the bending rigidity modulus and increases the

Gaussian modulus.18,19 This contradictory result has been found

for the induced curvature and rigidity of the membrane.18,19

A different theory is proposed: because a spatial confinement of

the grafted chain originates from the impenetrable membrane,

the inhomogeneous pressure patch is exerted onto the membrane

and the membrane shape is therefore transformed.20,21 In addi-

tion, previous theories describe the effect of tension on the

membrane shape by one parameter, an effective bending rigidity

of membrane,22,23 and ignore the fact that polymer chains

could induce an inhomogeneous tension on the membrane

upon interactions between the anchored chain segments and

membrane.

So far, those theoretical studies focus on a polymer anchoring

to a planar membrane,11–23 which hardly explain experimental

results on shape transformations of vesicles which have finite-

sized and closed membrane. Recently, we have developed an

approach combining Helfrich curvature elasticity theory for

fluid membranes with self-consistent field theory for polymers,

to explore rigid rod/polymer chains anchoring to vesicles,24,25 and
This journal is ª The Royal Society of Chemistry 2009
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rigid rod/polymer chains anchoring to infinite membranes.26,27

The results for polymer chains anchoring to infinite

membranes26,27 are in good agreement with those suggested by

previous Monte Carlo simulations and theoretical analysis.19–22

Preliminary results for shapes of vesicle anchored by polymer

chains have been reported briefly in a recent letter,24 and more

detail will be presented in this study. This article comprises

of four parts: section II provides a detailed description of the

theoretical model and numerical calculation method; section

III contains vesicle shapes as a function of various factors, such

as the interactions between the membrane and chain segments,

the chain length, the solvent quality and the bending rigidity

of the membrane, respectively. Corresponding discussions are

also given based on the calculated results; finally, summaries

and conclusions are drawn in section IV. Part of the algorithm

to obtain the shape equation is given in the Appendix.
2. Model

The model is schematically drawn in Fig. 1. Gaussian polymer

chains (np) with Np segments are end-anchored to one spatial

position on the membrane, and a vesicle anchored by polymer

chains are placed in ns solvent molecules. It is supposed that the

vesicle membrane is impenetrable for chain segments. Note that

the Kuhn statistic length of the polymer chain is assumed to be

b. A single solvent molecule is approximately assumed to have

the same size as the Kuhn statistic segment length b, so a single

solvent molecule occupies a volume of b3. Vesicles usually consist

of amphiphilic short chains forming the lipid bilayer with

a thickness about 4 nm which is comparable to the Kuhn length,

and thus the lateral unit length is reasonably assumed as b. Then,

the monomeric volumes 1/r0 for the polymer, vesicle and solvent

are identical, the compound system is therefore homogeneous

and incompressible with the reference density r0 f 1/b3.
Fig. 1 A schematic illustration of polymer chains anchored to a fluid

closed vesicle at r¼ 0 and h¼ 0, the solid dot indicates solvent molecules.

The axis of symmetry is denoted by h. S denotes the arc-length along the

contour measured from the south pole of the shape. j(s) is the angle

between the tangent to the contour and the r axis: r¼ 0, s¼ 0 in the south

pole, where r ¼ 0, s ¼ p in the north pole.

This journal is ª The Royal Society of Chemistry 2009
The solvent density operator is defined as brsðrÞ ¼ Xns
i¼1

d
�
r� R i

s

�
,

and polymer density operator as brpðrÞ ¼ Xnp
i¼1

ðNp

0

dsd
�
r� R i

pðsÞ
�
,

where Ri
s and Ri

p(s) represent spatial positions of solvent i and the

segment s of the ith anchored polymer chain, respectively. Solvent

molecules are assumed to penetrate the membrane freely and the

interaction between the membrane and solvent is then neglected.

The interaction Hamiltonian bHint includes the polymer–solvent

molecules (bVint, ps) and polymer–membrane (bVint, pm) interac-

tions, i.e. bHint ¼ bVint, ps + bVint, pm. They are given by and

b bV int; ps ¼ c

ð
drbrpðrÞbrsðrÞ (1)

and

b bV int; pm ¼ hb# dAbrp

�
r ¼ Rmðu; vÞ

�
where b ¼ kBT, c and h are Flory–Huggins interaction param-

eters of polymer–solvent and polymer–membrane pairs, respec-

tively. The spatial position of a vesicle Rm(u, v) is abbreviated as

Rm, where u, v are curvilinear coordinates for the vesicle surface.

The Hamiltonian of the polymer Gaussian chain28 takes the

form of

bH 0
p

�
Rp

�
¼ 3

2b2

ðNp

0

ds

"
dRpðsÞ
ds

#2

(2)

and the Hamiltonian of the membrane is formulated as29

bH 0
m½Rm� ¼

1

2
k#

A¼Rm
dA½2H þ c0�2þl#

A¼Rm
dAþ DP

ð
r˛Vin ½Rm �

dV

(3)

where k and H are the bending rigidity modulus and curvature of

the fluid membrane respectively, and c0 is the spontaneous

curvature of the fluid membrane. The tensile stress l acting on

the membrane and the pressure difference DP ¼ pout � pin across

the membrane are Lagrange multipliers of vesicle surface area A

and volume V, respectively.

The partition function of such a system can be written as

X ¼ N
1

ns!np!

ð
P
i¼1

i¼ns

DRi
s

ð
P
i¼1

i¼np

DRi
pðsÞexp

�
� bH0

p ½Ri
pðsÞ�

�
ð
DRm exp

�
� bH0

m½Rm�
�

exp
�
� b bV int; ps � b bV int; pm

�

P
r
d
�
r0 � brpðrÞ � brsðrÞ

�
d

264 ð
r˛Vin ½Rm �

drbrp

375 (4)

where N is a constant, r3Vin[Rm] or r3Vout[Rm] represents r either

inside or outside the vesicle, respectively.
Ð
DR denotes the path

integral over all possible conformations of chain segments,

membrane or solvent molecules. Furthermore, the first Dirac

function realizes the incompressible constraint with the reference

density r0, and the second Dirac function ensures polymer chains

to stay outside (r3Vin[Rm]). If r3Vout[Rm], the second Dirac

function is valid for polymer chains inside the vesicle.
Soft Matter, 2009, 5, 1646–1655 | 1647
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Performing Hubbard–Stratonovich transformation,30

Lagrange multipliers, x is introduced to enforce the incom-

pressible constraint, and z guarantees that the membrane is

impenetrable by polymer chains. The external auxiliary fields

up(r) and us(r), are self-consistent molecular fields conjugated to

local densities rp(r) and rs(r), respectively. The partition function

can be rewritten as

X ¼ N
Ð
DRm

Ð
Drp

Ð
Drs

Ð
Dup

Ð
Dus

Ð
Dx

Ð
Dz

exp{�bF[rp, rs, up, us, x, z,Rm]} (5)

where the free energy functional is

bF
�
rp; rs;up;us; x; z;Rm

�
¼ c

ð
drrprs �

ð
druprp �

ð
drusrs � np lnQp

� ns lnQs þ z

ð
r˛Vin ½Rm �

drrp þ hb#
A¼Rm

dArpðrÞ

�
ð
drx

�
r0 � rp � rs

�
þ 1

2
k#

A¼Rm
dA

�
2H þ c0

�2

þ l#
A¼Rm

dAþ DP

ð
r˛Vin ½Rm �

dV

(6)

In eqn (6), the partition function of a single polymer chain Qp

under the potential field up, and the partition function of solvent

molecules Qs under the potential field us are separately expressed

as

Qs ¼
Ð
dr exp {�us(r)}

and

Qp ¼
Ð
drqp(r, s)q0p(r, s)

where the sth segment distribution function qp(r, s) satisfies the

modified diffusion equation

v

vs
qpðr; sÞ ¼

b2

6
V2

r qpðr; sÞ � upðrÞqpðr; sÞ (7)

which is subjected to the initial condition qp[r ¼ Rm(0,0),0] ¼ 1

and qp[rsRm(0,0),0] ¼ 0 for the polymer with one end anchored

to the vesicle surface Rm(0,0). Due to the presence of the other

free end of the anchored polymer and its lack of inversion

symmetry, a conjugated segment distribution function q0p(r, s) is

subsequently introduced. The conjugated segment distribution

function q0p(r, s) satisfies a similar equation (7) with the right

hand side multiplied by �1, and it obeys the initial condition

q0p(r, Np) ¼ 1. In addition, this method is also valid for the

polymer and vesicle compound system without any anchoring

position if the initial condition is qp(r,0) ¼ 1.

To obtain the stable or metastable state of the system, by

minimizing the free energy in eqn (6) with respect to rp, rs, up, us,

x and z, respectively, we have reached the self-consistent equa-

tions for polymers and solvents,

upðrÞ ¼

hþ crsðrÞ þ xðrÞ r ¼ Rm

zþ crsðrÞ þ xðrÞ r˛Vin½Rm�

crsðrÞ þ xðrÞ r˛Vout½Rm�

8>><>>: (8)

us(r) ¼ crp(r) + x(r) (9)
1648 | Soft Matter, 2009, 5, 1646–1655
rpðrÞ ¼
np

Qp

ðNp

0

dsqpðr; sÞq
0

pðr; sÞ (10)

rsðrÞ ¼
ns

Qp

exp
�
� usðrÞ

�
(11)

rs(r) + rp(r) ¼ r0 (12)

0 ¼
Ð
r3Vin[Rm]drrp(r) (13)

According to variational algorithm given in ref. 29 and

Appendix, the further minimization of the free energy bF with

respect to the membrane has been performed. The shape

equation of one vesicle in the presence of polymers is

{DP + zrp(r ¼ Rm) + hb[n$Vrp(r ¼ Rm)]} � 2H[hbrp(r ¼ Rm)

+ l] + 2kV2H + k(2H + c0)(2H2 � c0 � 2K) ¼ 0 (14)

where K is the Gaussian curvature of the membrane, n$Vrp(r ¼
Rm) denotes the density gradient along the normal direction to

the vesicle.

Compared with the general shape equation (15) derived by

Ou-Yang et al.,29

DP � 2Hl + 2kV2H + k(2H + c0)(2H2 � c0 � 2K) ¼ 0 (15)

three additional terms that are closely related to the spatial

distribution of chain segments, are included in the shape

equation (14). Firstly, the extra pressure called inhomogeneous

entropic pressure zrp(r ¼ Rm) is added, which originates from

a decrease of the chain conformational entropy due to the

spatial confinement by the impenetrable membrane. Secondly,

the interactions between chain segments and the membrane

induce extra inhomogeneous tensile stress acting on the

membrane that depends on the attractive or repulsive strength

between chain segments and the membrane, as well as the

polymer density on the membrane, i.e. hrp(r ¼ Rm). When chain

segments are adsorbed to the membrane surface, they reduce the

tensile stress on the membrane contacted by chain segments.

Additionally, the interactions lead to additive inhomogeneous

pressure h[n$Vrp(r ¼ Rm)], and this implies that more chain

segments tend to cover the surface on the vesicle at the

adsorptive state, h < 0, whereas less chain segments on

the vesicle surface for the repulsion state, h > 0. Turning to the

shape equation (14), an effective bending rigidity constant keff
that is position-dependent, can be extracted by combining the

bare value k with the induced pressure and tensile stress on

the membrane. The changes in the induced pressure and tension

consider the redistribution of the anchored polymer density due

to the deformed membrane as well.

In numerical calculations, all parameters are dimensionless,

but can be mapped to physical values. Length and energy are

scaled in units of b and the bending rigidity constant k, respec-

tively. Then, length, surface and volume of the vesicle and the

whole free energy are scaled as �r ¼ r/b, �A ¼ A/b2, �V ¼ V/b3 and

b �F ¼ bF/k, respectively. The bending rigidity, surface tension

and pressure of the vesicle are rescaled as �k ¼ 1kBT, �l ¼ lb2/k,

and D �P ¼ DPb3/k. The dimensionless shape equation (14) has the

form of
This journal is ª The Royal Society of Chemistry 2009
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�
D �Pþ �z

1

Nk
rpð�r ¼ RmÞ þ �hb

1

Nk

h
n$Vrpð�r ¼ RmÞ

i�

� 2H

	
�hb

1

Nk
rpð�r¼ RmÞ þ �l



þ 2�kV2H þ �kð2H þ c0Þ

�
2H2 � c0 � 2K

�
¼ 0

(16)

The anchored polymers will be randomly distributed around

the grafting position as shown in Fig. 1. After ensemble aver-

aging, the vesicle shapes in the presence of the anchored polymer

can be assumed to be axis symmetric and this greatly simplifies

the calculation. In this present study, a vesicle anchored by

polymer chains is described in the axis-symmetric coordinate

system, where h is the height of the membrane and r is the

coordinate along the horizontal direction. The self-consistent

equations (6)–(13) and shape equation (14) are solved in the axis-

symmetric coordinate system as shown in Fig. 1. In order to solve

eqn (6)–(13), we set N ¼ 200, b ¼ 1, Ds ¼ 1, D r ¼ Dh ¼ 0.05b,

with the box size Lr ¼ 5 and Lh ¼ 20. The initial fields �x(r, h),

�up(r, h) and �us(r, h) are randomly generated, and the field �z(r, h)

is subsequently obtained based on the initial vesicle shape.

Following the iterative procedure of Drolet and Fredrickson,30

the self-consistent equations (6)–(13) are solved to obtain the

polymer density rp(r, h) and solvent density rs(r, h) with these

fields. According to the original vesicle shape, the resulting

polymer density rp(r ¼ Rm) and density gradient n$Vrp(r ¼ Rm)

are inserted into shape equation (14) to yield the new vesicle

shape. These self-consistent equations, eqn (6)–(14), are solved

iteratively to obtain the new vesicle shape as well as updated

polymer density distributions. The steps are finished until the

following convergence conditions have been reached between

two successive iterations.

Using the Crank–Nicholson scheme and alternating-direction

implicit (ADI) method, the modified diffusive equations are

integrated to obtain qp and q0p without slope boundary condi-

tion.31 Under the old vesicle shape, the iterative procedure of

self-consistent equations will be finished until the density distri-

butions satisfy the convergence condition of |r0 � rp � rs| < 1 �
10�4. The shape equation (14) is solved to obtain the new vesicle

shape with the stable polymer density rp(r, h).

The shooting-and-trial algorithm32 is used to solve the shape

equation (14) for an axis-symmetric vesicle. We set the step of arc

length ds¼ 8.0 � 10�4, and seek for the value of dj(s)/ds|s¼0 until

the shape closes, where j(s) is the tilt angle between the tangent to

the contour and the r direction, as shown in Fig. 1. For a given

tension �l and pressure differenceD �P, the unalterable vesicle shape

and polymer distribution have been both reached, as this iterative

procedure will end when the difference for both dj(s)/ds|s¼0 and

rp(r, h) between two successive iterations are less than 10�4. In

order to maintain the surface area �A0 and volume �V0 of the vesicle

constant, �l and D �P are searched using successive over relation

method, and the iterative procedure ends with the additive

constraints of | �A� �A0|/ �A0 < 1 � 10�4 and | �V � �V0|/ �V0 < 1 � 10�4.
3. Result and discussion

A simple case, polymers anchoring outside or inside vesicle, is

investigated at �h ¼ 0, c0 ¼ 0 and �c ¼ 0. The solutions of shape
This journal is ª The Royal Society of Chemistry 2009
equation (14) contain local minima and saddle points in the space

of all stationary shapes. To verify our numerical procedure, these

stationary shapes of ‘bare’ vesicle obtained are in excellent

agreement with previous results.32 Here, shapes of fluid vesicles

anchored by polymer chains are characterized by the dimen-

sionless reduced volume v h V/[(4p/3)R3
0], where R0 h (A/4p)1/2

is the radius of a sphere with the same surface area. With

decreasing reduced volume v, the biconcave character of a isolate

cell becomes more pronounced, giving that v ¼ 1 is for spherical

object, v in the range 0.9–1 has an approximately prolate

ellipsoidal shape and v ¼ 0.6 corresponds to the normal human

erythrocyte.

Several typical shapes of the vesicle anchored by polymer, and

the ‘bare’ vesicles with the same reduced volume v are illustrated

in Fig. 2 with the anchored polymer outside (�z > 0) and in Fig. 3

with the anchored polymer inside (�z < 0). As mentioned above,

b ¼ 5 nm. The coil size of the polymer chains is close toffiffiffiffiffi
N

p
bz70 nm with N ¼ 200 (note that in all figures the length is

rescaled by b and the density of the polymer chains is drawn in

a gray scale on a logarithmic scale). In Fig. 2 and 3, the combined

Helfrich–SCFT approach leads to a variety of interesting shapes,

such as prolates, oblates, discocytes and stomatocytes. Due

to local disturbances of these anchored polymer chains, the

symmetry of the ‘bare’ shapes is destroyed, for example the

spherical shape is unstable and thus are not observed any more.

Complete phase diagram will be presented in a later work, giving

the shape of the lowest bending energy for a given v, spontaneous

curvature c0 and other parameters.

Next, we study shape transformations of a vesicle anchored by

polymer chains with invariable surface area and volume. The

surface area and volume of vesicles presented in this study

correspond to the physical magnitude of 0.026 mm2 and 0.34 �
10�3 mm3, respectively. Shapes of vesicles anchored by polymer

chains are presented in Fig. 4 upon interaction parameter �h

varying from �h ¼ 10 (repulsion) to �h ¼ �25 (adsorption). As

shown in Fig. 4(a), the ‘bare’ sphere vesicle becomes prolate at �h

¼ 0, whereas the vesicle transforms from prolate to oblate with

further decreasing interaction parameter �h. A notable feature in

Fig. 4(a) is that at �h¼�25, two small protrusions are observed in

the south and north poles of the vesicle. It is also seen in Fig. 4

that these vesicles are drawn out along the perpendicular direc-

tion (h axis) when �h > 0, but are pressed along h direction and

become broader along r direction when �h < 0. To gain more

insights into these transformations, the bending elastic energy of

vesicles is studied. With a decrease of the interaction parameters

�h, the bending elastic energy of these vesicles is slightly changed.

The scope of the bending energy is |F{de, b} � F{ad, b}|/F{de, b} <

0.05, where F{de, b} represents the bending elastic energy of the

vesicle at �h ¼ 10 and F{ab, b} at �h ¼ �25. Thus, the transitions

among these shapes are easily realized, which have been observed

in recent experiments.33 In addition, the bending elastic energy of

the ‘bare’ vesicles shown in Fig. 4(b) is the same as that in

Fig. 4(c), but the bending elastic energy of the vesicles anchored

by polymers in Fig. 4(b) increases slightly faster than those in

Fig. 4(c) with the same interaction parameter �h. Compared to

Fig. 4(c), the membranes in Fig. 4(b) provide less active space for

the anchored polymers, the conformational entropy of polymers

is more reduced and the bending energy of the vesicles increases

as well.
Soft Matter, 2009, 5, 1646–1655 | 1649
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Fig. 2 Typical stationary solutions, including shapes of the vesicle and segment distributions of the polymer chain, to the self-consistent equations. The

shape of the vesicle with polymer anchored outside is represented by black solid curves and the density of the polymer chain is drawn in gray scale map by

logarithm scale. The shape of the ‘bared’ vesicle is represented by red curves. The horizontal (r) and vertical (h) axes are scaled by b. In all cases, we use

b ¼ 1, N ¼ 200, k ¼ 1.67, c0 ¼ 0, �c ¼ 0, �h ¼ 0 and �z ¼ 300.
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Besides the shapes of the vesicles, polymer density distribu-

tions are also significantly changed upon interactions between

chain segments and the membrane. When �h $ 0, as anticipated,

the polymers are repelled from the vesicle surface, and thus have

the form of a mushroom with a size comparable to the dissolved

polymers, as given in the left insets of Fig. 4(a)–(c). �h < 0 means

adsorption interactions between chain segments and the

membrane. Weak adsorption leads the polymers to form

squashed mushroom shapes. The strong adsorption interactions

play dominating roles over the conformational entropy loss of

the polymers, and the vesicle is so ‘starved’ that the chain

segments form ‘pancakes’ which are tightly bound onto the

membrane surface, as shown in the right insets of Fig. 4. As

expected, the chain segments on the vesicle surface go up

3.5 times when �h decreases from 10 to �25, and the lateral size of

the polymers, as one of important factors of the membrane’s

curvature,16,17 decreases close to 0.2 Rp (the end-to-end distance)

at �h ¼ �25. Thus, both the chain segments distribution and

lateral size of the polymers are significantly changed upon

interactions (�h) between chain segments and the membrane.
1650 | Soft Matter, 2009, 5, 1646–1655
Without the anchoring position between the planar membrane

and chain segments, analytical results show that at weak

adsorption between the membrane and chain segments, the

membrane will bend away from chain segments so as to provide

more active spaces and reduce the entropic loss of the poly-

mer,11,15 whereas at strong adsorption, the membrane will bend

towards chain segments to increase the contact area. However,

for the planar membrane anchored by the polymer with the

anchoring position, different results have been obtained in that

the membrane always bends away from the polymer even in

the strong adsorption.15,16 In this study, at strong adsorption

(�h¼�25), the vesicles mildly bend away from the chain segments

as shown in Fig. 4(b). Whereas, Fig. 4(a) and (c) show that the

vesicle curvature near the anchoring position is kept almost

unchanged even with vesicle shape deformed remarkably at

�h ¼ �25. Therefore, the membrane neither increases the contact

area nor provides more active spaces for the anchored polymers.

These results are counterintuitive but reasonable, because the

membrane at first has to ensure its closure and finite size, and

then chooses to adjust its shape to attain the balance of the global
This journal is ª The Royal Society of Chemistry 2009
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Fig. 3 Typical stationary solutions, including shapes of the vesicle and segment distributions of the polymer chain, to the self-consistent equations. The

shape of the vesicle with polymer anchored inside is represented by black solid curves and the density of the polymer chain is drawn in gray scale map by

logarithm scale. The shape of the ‘bared’ vesicle is represented by red curves. The horizontal (r) and vertical (h) axes are scaled by b. In all cases, we use

b ¼ 1, N ¼ 200, k ¼ 1.67, c0 ¼ 0, �c ¼ 0, �h ¼ 0 and �z ¼ �300.
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free energy, such as interactions between chain segments and the

membrane, the conformational entropy loss for the polymers and

the bending elastic energy for the vesicle. Turning to the shape,

equation (14), when �h < 0, the polymer density on the membrane

surface increases with decreasing �h, thus causing the increased

inhomogeneous entropic pressure zrp(r ¼ Rm). However, the

additive pressure h[n$Vrp(r¼ Rm)], which arises from adsorption

interactions between the membrane and chain segments, can

counteract the induced inhomogeneous entropic pressure zrp(r¼
Rm). These results deeply reveal that shape changes are subtle

and intricate for the finite-sized and closed vesicle. It depends not

only on local interactions between chain segments and the

membrane, but also on the global shape of the vesicle.

The Flory–Huggins interaction parameter c between chain

segments and solvents is ideally expected to influence the

conformational distribution of chain segments, despite it is

absence in the shape equation (14). Fig. 5 presents shapes of

vesicles anchored by polymer chains when np ¼ 200, �c ¼ 0 or
This journal is ª The Royal Society of Chemistry 2009
�c ¼ 160. It is seen from Fig. 5 that these two vesicle shapes

are indistinguishable. However, the locally magnified shapes (the

north pole of the vesicle) in the top-left inset of Fig. 5 show that

when �c increases from �c ¼ 0 to �c ¼ 160, the height of the vesicle

increases slightly. Therefore, the quality of solvents contributes

slightly to the shape deformation of a vesicle. As far as the

polymer density distribution is concerned, these two mushrooms

at the �c values are very similar. Likewise, the polymer densities

along the h direction at r ¼ 0 are presented in the top-right inset

of Fig. 5. When interaction parameter �c increases from 0 to 160,

the polymer density clearly goes up beyond the end-to-end

distance (Rp). However, the polymer density on the vesicle

surface increases only 20%, because the highest density is close

to the membrane surface (h ¼ 0). Accordingly, the differences

in both polymer densities and deformed shapes are too small to

discern. Further increasing �c will cause chain segments to

collapse, which is difficult for self-consistent field theory.

Previous scaling theory has suggested that the induced curvature
Soft Matter, 2009, 5, 1646–1655 | 1651
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Fig. 4 Effect of the polymer–membrane interaction parameter, �h. The

parameters used are c0 ¼ 0, �c ¼ 0, k ¼ 25 and �z ¼ 300. The shape of the

vesicle is represented by different type curves and the anchoring points

are indicated by arrows.

Fig. 5 The effect of the polymer-solvent interaction parameter, �c. The

parameters used are c0 ¼ 0, �h ¼ 0, k ¼ 2 and �z ¼ 300. For clarity, the

anchoring points are indicated by arrows. Membrane shapes are

magnified in the north pole in the left inset, polymer densities of r ¼ 0 are

listed in the right inset and the horizontal axis is scaled by Rp.
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Mpi is proportional to the coverage �G of polymer.16,17 Likewise,

the alterations of Rp and �G shown in Fig. 5 are less as a function

of the solvent quality, thus both the bending elastic energy and

shapes of the vesicle are kept almost unchangeable within certain

range of �c. We can conclude that the effect of �c on vesicle shapes

can be disregarded compared with other parameters. In addition,

the anchored polymer has a self-avoiding random walk config-

uration at �c ¼ 0.

The chain length of the anchoring polymers is relevant to

polymer densities adjacent to the membrane, and is therefore

expected to influence the shape transformation of a vesicle. Fig. 6

gives the shapes of vesicles anchored by polymers influenced by

chain lengths at �h ¼ 0 and �h ¼ �15. At �h ¼ 0, the vesicle shapes

are almost unchanged, and only a slight effect of the chain length

on the vesicle is observed. At �h ¼ �15, vesicle shapes are all

pressed along the perpendicular direction (h axis). However,

vesicle shapes change gradually as the chain length of the

anchored polymers increases. To provide insights into shape

transformation of vesicles, the polymer density distribution has

to be studied since the induced entropic pressure and tensile

stress depend on the polymer density on the membrane surface.

At �h ¼ �15, the polymer density near the membrane surface at

first increases rapidly and then much slower as a function of the

chain length. With the increasing chain length, the membrane

will already be full of chain segments and is not able to ‘eat’ any

more chain segments at this specific adsorptive state. At �h ¼ 0,

the polymer density near the membrane surface is almost inde-

pendent of the anchored polymer length. It is also found that for

the grafted polymer with the same grafted density, the polymer

density adjacent the grafted surface remains almost unchanged

with repulsive interactions between the grafted surface and

polymer, disregarding to the chain length of the grafted poly-

mer.34 Then, we can conclude that when �h $ 0, the polymer

density near the membrane surface is unalterable with a increase

of the anchored chain length, and then the induced pressures

{zrp(r ¼ Rm) and h[n$Vrp(r ¼ Rm)]} and tensile stress [hrp(r ¼
Rm)] are kept unchanged in this system. Thus, shape deformation
This journal is ª The Royal Society of Chemistry 2009
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Fig. 6 The effect of the polymer-chain length parameter, np. The parameters used are c0 ¼ 0, �c ¼ 0, k ¼ 25, and �z ¼ 300.
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of the vesicle is always independent of the chain length when �h$

0, whereas the vesicle shape is at first influenced strongly and then

weakly as the chain length increases when �h < 0.

The bending rigidity is one of the basic parameters of fluid

membranes and can be measured by means of the micropipette

method.35,36 For biological membranes primarily composed of

a phospholipids bilayer, the bending rigidity constant k ranges

typically from 10kBT to 40kBT, and is much smaller than that

of the vesicle consisting of amphiphilic polymers.35,36 The

bending rigidity modulus describes a kind of capability for

a vesicle that can resist perturbations and deformations. In

Fig. 7, shapes of vesicles anchored by polymers are presented as

a function of the bending rigidity constant k at �h ¼ 0 and �h ¼
�15. As shown in Fig. 7, significant changes in vesicle shapes

are observed, and the vesicles approach a ‘bare’ vesicle when the

bending rigidity increases from k ¼ 5 to k ¼ 100. This implies

that vesicles with less bending rigidity are prone to fluids,

susceptible to extra-pressure and tensile stress, and will be

seriously deformed. In addition, Fig. 7(b) shows that when the

bending rigidity constant k shifts from 100 to 5, serious changes

in the vesicle shapes are observed at �h ¼ �15 whereas the

vesicle shapes at �h ¼ 0 are kept almost unchanged. Thus, the

vesicle will respond differently to the increase of the bending

rigidity constant and adjust its shape according to its globe

factors, including interactions between membrane and chain

segments, the bending elastic energy for the closed and finite-

sized vesicles, etc.
This journal is ª The Royal Society of Chemistry 2009
4. Conclusion

Shapes of fluid vesicles anchored by polymer chains are studied

via a combination of Helfrich curvature elastic theory for fluid

membranes with self-consistent field theory for polymers. The

approach not only leads to stable and metastable shapes of the

vesicle but also produces the density distribution of chain

segments. Due to the vesicle’s impenetrability to polymer chains,

the available space for the polymer is reduced. Thus, the

anchored polymer chains induce the inhomogeneous entropic

pressure on the membrane and cause the deformation of the

vesicle shape. When adsorptive or repulsive interactions are

found between the vesicle membrane and chain segments, the

anchored polymers not only lead to the inhomogeneous pressure

on the membrane but also change the local tension of the

membrane so as to deform the vesicle remarkably. Likewise,

conformations of the anchored polymer chains undergo a tran-

sition from ‘mushroom’ to ‘pancake’ with the increase of the

adsorption strength. Furthermore, the effects of the chain length

of anchored polymers and the bending rigidity on the vesicle

deformation are explicitly investigated. The chain length of

anchored polymers hardly changes the vesicle shape when �h$ 0,

whereas the effect of the chain length is at first enhanced rapidly

and then slowly when �h < 0. High bending rigidity of the

membrane can resist extra inhomogeneous pressure and tension,

and then the vesicle exhibits much less transformation. In addi-

tion, the solvent quality scarcely affects the density distribution
Soft Matter, 2009, 5, 1646–1655 | 1653
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Fig. 7 The effect of the bending rigidity parameter, k. The parameters used are c0 ¼ 0, �c ¼ 0, and �z ¼ 300.
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of chain segments and its effect of solvent quality on the shape of

the vesicle is approximately neglected compared with other

parameters. The results presented here provide valuable insights

to various biological processes, including cell motility, cell shape,

cell functions, etc.

Appendix

Since the vesicle we studied is assumed to be one component, the

normal direction has to be considered and the tangential direc-

tion can be reasonably neglected when the free energy functional

in eqn (6) is minimized with respect to the membrane. The

variation algorithm can be referred to in the book by Ou-Yang

et al.29 and the terms relevant to the polymer density will be given

as follows.

The vesicle shape after a small fluctuation can be described as,

R0
m(u, v) ¼ Rm(u, v) + 4(u, v)n, where n is normal direction and

4(u, v) is continuous function of u, v. The expansion of the term,Ð
r3V[Rm]drrp, is given by

dt

ð
r˛V ½Rmðu;vÞ�

drrp

( )
¼
ð
r˛V

�
R
0
mðu;vÞ

� dr�rp þ drp
�
�
ð
r˛V

�
Rmðu;vÞ

� drrp
¼

ð
r˛V

�
4ðu;vÞn

� dr�rp þ drp
�
þ
ð
r˛V

�
Rmðu;vÞ

� drdrp
(17)
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The last term in the right-hand of the equation (17) is close to

zero and can be therefore neglected. The equation (17) takes the

formð
r˛V ½4ðu;vÞn�

dr
�
rp þ drp

�
x

ð
r˛V ½4ðu;vÞn�

drrp

¼
ð
u;v

ð4ðu;vÞ
0

rp½Rmðu; vÞ þ sn�g1=2½Rmðu; vÞ þ sn�dsdudv

¼
ð
u;v

ð4ðu;vÞ
0

�
rpðu; vÞ þ Vrpðu; vÞ,sn

��
g1=2ðu; vÞ � 2Hg1=2ðu; vÞs

�
dsdudv

¼
ð
u;v

ð4ðu;vÞ
0

�
rpðu; vÞg1=2 þ

�
Vrpðu; vÞ,ng1=2 � 2Hrpðu; vÞg1=2

�
s
�
dsdudv

�
ð
u;v

ð4ðu;vÞ
0

2Hg1=2Vrpðu; vÞ,ns2dsdudv

¼
ð
u;v

	
rpðu; vÞg1=24þ 1

2

�
Vrpðu; vÞ,ng1=2 � 2Hrpðu; vÞg1=2

�
42



dudv

�
ð
u;v

2

3
Hg1=2Vrpðu; vÞ,n43dudv

x

ð
u;v

rpðu; vÞg1=24dudv

(18)
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In eqn (18), rp[Rm(u, v)] is simplified to symbol as rp(u, v), where

4(u, v) is an arbitrary, sufficiently and well smooth function of u

and v, whereas s is a smaller continuous, smooth function than

4(u, v).

Accordingly, a similar variation of the term #
A¼Rm

dArp can be

achieved and is given by

dt

ð
u;v

rpg
1=2dudv

¼
ð
u;v

rp½Rmðu;vÞþ4n�
�
g1=2 þ dg1=2

�
dudv�

ð
u;v

rpðu;vÞg1=2dudv

¼
ð
u;v

��
rp½Rmðu;vÞþ4n� � rp½Rmðu;vÞ�

�
g1=2 þ rp½Rmðu;vÞþ4n�dg1=2

�
dudv

¼
ð
u;v

�
Vrp,4ng

1=2 þ
�
rpðu;vÞdg1=2 þVrp,4ndg

1=2
��
dudv

¼
ð
u;v

�
Vrp,n4� 2Hrpðu;vÞ4� 2HVrp,n4

2
�
g1=2dudv

x

ð
u;v

�
Vrp,n� 2Hrpðu;vÞ

�
g1=24dudv

(19)
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